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Abstract

The parallel adaptive model PLASMA has been developed for modeling a barotropic atmosphere. This model adapts
the computational grid at every time step according to a physical error indicator. Thus, compared to uniform grid exper-
iments the number of grid points is reduced significantly. At the same time, the error increases only slightly, when com-
paring with uniform grid solutions.

For the discretization of the underlying spherical shallow water equations a Lagrange—Galerkin method is used. The
unstructured triangular grid is maintained by the grid generator amatos and the large linear systems are solved by the
parallel solver interface FoSSI. Experimental convergence is shown by means of steady-state and unsteady analytical solu-
tions. PLASMA yields satisfactory results for quasi standard experiments, that is the Rossby—Haurwitz wave and zonal
flows over an isolated mountain.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Atmospheric flows are largely determined by nonlinear interactions between processes at widely varying
spatial and temporal scales. Thus, the realistic representation of these nonlinear multi-scale interactions is
important for climate modeling as well as for numerical weather prediction. Considering the large-scale cir-
culation, the interaction between zonal flow and planetary Rossby waves plays a crucial role for climate
variability on time-scales from seasons to decades. To study these and other multi-scale interactions, the
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application of a global atmospheric model with a flow-dependent, i.e. dynamically adaptive grid may be
appropriate.

The purpose of this paper is to introduce the new, Parallel LArge-scale Self-adaptive Model of the Atmo-
sphere (PLASMA). Within PLASMA, the model equations are solved on an unstructured, triangular grid,
which is dynamically adapted to the evolving atmospheric flow every time step. The dynamic grid adaptation
allows spatial resolution to increase locally over regions of interest within the whole model domain, thus keep-
ing the computational costs limited.

Nowadays, atmospheric models with fixed, uniform horizontal resolution are most common. These models
can resolve nonlinear multi-scale interactions only over a very limited range of spatial scales. To overcome this
limitation, several approaches for a locally increased spatial resolution over areas of interest have been devel-
oped especially for atmospheric regional models (see [18] for an overview). The most important approaches
are nested grids, stretched grids and dynamically adapted grids.

Nested modeling systems have been developed since the 1970s for numerical weather prediction, e.g. [12],
and later on for regional climate modeling, e.g. [22]. The nesting technique consists in embedding a high-res-
olution regional model into a low-resolution model, where the latter provides the time-dependent boundary
forcing for the high-resolution model. The nesting technique can be either one-way, see [12], or two-way inter-
active, see [50,34]. In simpler one-way nesting, large-scale information is given to the regional model, but no
feedback from the high-resolution model to the low-resolution nesting model is possible. Two-way nesting
includes feedback from the regional domain to the large scales, thus reducing potential mismatch between
the high-resolution model and the low-resolution model.

An alternative technique for variable-resolution models is the stretched grid approach. Pioneering work
on this approach for grid point models has been done by Staniforth and Mitchell in [46]. By stretching
grid intervals outside a fixed, uniform fine-resolution area of interest uniformly over the rest of the globe,
a single global variable-resolution grid is obtained. The main advantage of this approach is that it includes
the two-way feedback between large-scale and regional-scale circulation. Stretched-grid regional climate
simulations are becoming more common since the 1990s (see the studies [13,18,35]) and leading to the
international Stretched-Grid Model Intercomparison Project (SGMIP) initiative, see [17]. For spectral
models, a stretched grid can be obtained by applying a stretching coordinate transformation, see [42]. Sev-
eral global atmospheric models are based on this approach, together with a rotation of the poles, see
[11,25].

The stretched grid approach with one fixed area of interest has been further developed in [19] to a grid
design with multiple areas of interests which allows the simulation of different regional climates simulta-
neously. Even more flexibility with respect to areas and features of interest can be gained with dynamically
stretched grids based on time-dependent global coordinate transformations. By redistributing a constant num-
ber of grid points a dynamically adapted moving grid is obtained. Probably the first atmospheric application
of this method was developed by Dietachmayer and Droegemeier [14] solving the one-dimensional viscous
Burger’s equation. One- and two-dimensional adaptive advection problems have been treated in [27] whereas
in [39] a 3D anelastic, non-hydrostatic model based on this time-dependent coordinate transformation has
been developed.

Instead of moving the grid with time, another dynamic grid adaptation technique inserts or removes grid
points depending on a feature or process of interest. The first atmospheric model using this technique, a 3D
limited-area model, has been introduced in [44,43]. More recently Bacon et al. [2] have developed the Opera-
tional Multiscale Environmental model with Grid Adaptivity (OMEGA), which is an adaptive non-hydro-
static regional weather and dispersion model.

On the way to the development of 3D global dynamically adaptive models, several spherical adaptive 2D
shallow water models have been developed. The spherical shallow water equations comprise the essential phys-
ical phenomena that are included in the full set of primitive equations. Thus, they provide a test environment
for the horizontal discretization methods and the adaptive grid refinement before going to the development of
full 3D models.

Statically adaptive shallow water models on the sphere have been introduced in [41,16,5]. Until now, spher-
ical dynamically adaptive shallow water models are not wide-spread. Recently, Jablonowski proposed in
[28,29] an adaptive grid refinement technique for the hydrostatic Lin—-Rood dynamics package based on a
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conservative and monotonic finite volume discretization in flux form. The corresponding dynamical core on
the sphere has been run in a 2D shallow water model configuration as well as in a full 3D hydrostatic config-
uration. The proposed grid refinement technique has been developed for a quadrilateral latitudinal-longitu-
dinal grid using a block-structured data-layout.

Here, we have developed a different dynamically adaptive shallow-water model, the model PLASMA. The
requirements for underlying grid refinement strategy had been: (i) high flexibility in providing areas with high
and low resolution, (ii) no abrupt changes in grid resolution, (iii) grid refinement depending on a feature or
process of interest, (iv) automated refinement and coarsening of the grid. Furthermore, we have to demand
stability of the numerical method for different spatial resolutions.

To fulfill these requirements, we approximate the sphere by a polyhedron consisting in an adaptive,
unstructured triangular grid with the nodes situated on the sphere. The grid is generated by the mesh generator
amatos, see [7]. Its refinement strategy is controlled by the atmospheric flow processes. A Lagrange—Galerkin
method is used to discretize the governing equations. The Lagrange—Galerkin method is a combination of the
semi-Lagrangian method for the temporal and the finite element method for the spatial discretization. These
discretization methods lead to large linear systems of equations which are solved by means of parallel linear
solver interfaces, provided by the package FoSSI, see [20].

The governing continuous equations of PLASMA are described in Section 2, whereas their numerical dis-
cretization by a Lagrange—Galerkin method is given in Section 3. The dynamically adaptive grid generation
technique is presented in Section 4 followed by the introduction of the parallel linear solver interfaces in Sec-
tion 5. In Section 6, PLASMA is validated with special emphasis on the study of the convergence properties.
This is achieved by means of several known shallow water test cases, including steady analytical and non-ana-
lytical cases, see [49]. Furthermore, recently introduced unsteady analytical test cases in [33] are applied. In
order to demonstrate the ability of PLASMA to simulate the most important feature of the extratropical
large-scale circulation, planetary Rossby-waves, numerical experiments are presented in Section 6 as well.
The paper concludes with a summary.

2. Spherical shallow water equations

PLASMA is based on the spherical shallow water equations. These barotropic equations are derived from
the non-divergent primitive equations in R® for a homogeneous atmosphere with small vertical velocity com-
ponents, see e.g. [24,37,31]. In PLASMA the spherical shallow water equations are used in a scalar formula-
tion in terms of the prognostic variables vorticity, divergence and geopotential.

At first, some notation is introduced, the constants a=6.371221x 10°m for the Earth radius,
Q=7.292x 107" 1/s for the Earth’s angular velocity and g = 9.81 m/s* for the Earth’s acceleration due to
gravity. Further, the equations are considered in a time interval (0,7) C R and in the spatial domain
S = {x € R*||x| = a}. For two vectors x,y € R’ the scalar product is denoted by x - y.

The advective formulation of the spherical shallow water equations in cartesian coordinates, known from
e.g. [10,49,23,9], can be written as

du |u]?
E—FVS(D— —7k x U—Hk,
7d(¢dt ng) + (dj — @B)divsu = 07 (1)

u-k=0.

Here, u(x, #) € R® and ®(x, ) € R are the wind field and the geopotential height field, k(x) = A is the nor-
mal vector in vertical direction, f'=2€(0,0,1) - k is the Coriolis parameter and ®z(x) € R is the given geo-
potential height field of the Earth’s orography. The material derivative of a function % is defined by
‘é—’: = 0;h +u - Vgh, the horizontal gradient by V¢h = Vh — (k- Vh)k, the horizontal divergence of a vector
field v by divgv =div(v — v - kk) and the horizontal Laplacian by Agh = divgVsh. System (1) is equivalent
to the scalar formulation of the spherical shallow water equations which consists of the prognostic
equations
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—+C5 +fo=—u-Vsf,

dé
dr
d( — )
dr
and the Helmholtz decomposition
—Asyyp =,
Asy =0, (3)
rotsyy + Vsy = u.

+As® — f{=—(k xu)-Vsf —J(u), (2)

4 (D — B5)5 =0

The prognostic variables are vorticity, divergence and the geopotential field denoted by
{(x,1),0(x,1), P(x,t) € R, respectively. The diagnostic variables are the wind field u, the stream function
Y(x,t) € R and the velocity potential y(x,¢) € R. The functional J is defined by J(u) :Z, 1 (Vsui);
(Vsuj); +u-u.

3. Lagrange—Galerkin method

The model PLASMA computes the numerical solution of a viscous version of systems (2) and (3). Because
viscosity vanishes asymptotically, this solution can be interpreted as a vanishing viscosity limit of systems (2)
and (3). For that purpose, the Lagrange—Galerkin method, e.g. see [47], is applied to the viscous spherical shal-
low water equations. The Lagrange—Galerkin method is a combination of the semi-Lagrangian method for the
temporal and the finite element method for the spatial discretization on the sphere. Grid adaptation is accom-
plished in every time step. Based on a physical error indicator, in the time step 7 a new triangulation "' of S
is created with the grid generator presented in Section 4. A linear system of equations for the prognostic vari-
ables at time 7" is constructed with the finite element method on 7 "*!. In doing so, on the right hand side the
semi-Lagrangian method leads to trajectory computations and interpolations of variables at time step 7 on the
triangulation 77",

3.1. Artificial viscosity

Numerical modeling of advection dominated processes has to deal with energy transport from larger to
smaller physical wave lengths. Because the computational grid gives a lower limit for the discrete wave lengths
an energy accumulation in the small scales can lead to numerical instabilities, e.g. see [36]. One possibility to
circumvent this phenomenon is damping with artificial viscosity.

Due to these reasons, for the application of the Lagrange—Galerkin method the viscous spherical shallow
water equations are considered. They consist of the systems (2) and (3) and the additional artificial viscosity
terms —vAg{, —vAgd and —vAg® on the left hand sides of the equations in system (2), respectively. In doing so,
the space dependent viscosity parameter v(x,¢) € R is chosen proportional to the local grid resolution Ax.
Thus, the asymptotic limit of the discrete viscous spherical shallow water equations yields a numerical solution
of system (2).

3.2. Semi-Lagrangian method

The semi-Lagrangian method is an approximation of the material derlvatlve L of a scalar function /4, see
[45]. Within one time step, each grid point x is treated as a Lagrangian particle and d—h at the point x is approx-
imated by a difference quotient along the trajectory of the point. In PLASMA, trajectories are computed by a
first order explicit Euler method which leads to a first-order approximation of the material derivatives

Let us consider a function A(x, ) € R within the time step 7" — #**'. The material derivative ¢! is derived on
each grid point x € S implicitly at time /*"'. Therefore, the trajectory function X is consrdered starting at x
fulfilling the equation



M. Lduter et al. | Journal of Computational Physics 223 (2007) 609-628 613

0. X(x, " 1) = u(X(x, " 1), 1), X(x, ) = x

n+1:| n+1

for T € [¢",¢"""]. This system is solved with the time extrapolated value u(x,#"" ") by an explicit Euler method
ylel(}]m thf:l numerical solution X*(x) = X*(x,”""1:/") = X(x, ;") + O(A). Using d(x, 0t =

L) h(it(x' ) 4 O(At), we obtain the first order approximation of the material derivative at the point
X* for a smooth (Lipschitz continuous) /
dh h(x, ") — h(X*(x), ")
oy = 15 ’
de (3, 07) At

+O(Ar). (4)

3.3. Finite element method on the sphere

The starting point for the finite element method is the weak formulation of system (2,3) at time 7. For the
clarity of presentation, in this section we confine ourselves to the treatment of the vorticity equation in (2). Let
us denote /"T(x) = h(x,""!) for a function A(x, 7). Then, the weak formulation of the vorticity equation is

given by

d n+1
/S (d_f - +f>a"“)<oda+ /S W - Vspds = /S (- Vsf)pdo

for arbitrary test functions ¢(x) € R. With the approximations
1
Cn+15n+] _ 5 (Cn+]5n + Cn5n+1) + O(AI), un+1 =u" 4 O(At)

and the semi-Lagrangian time derivative in Eq. (4) one obtains the linearized semi-discrete formulation of the
vorticity equation

/(C”+1<1—|—At5n> +5n+1At(f+€n>>(pda—|—At/VVSCHI‘Vs(pdo‘
g B 2 s
- / (("(X') = A" - Visf ) do. ®)
s

At every time step the grid is adapted to the dynamical model situation. Therefore, a physical error indicator is
derived for model variables at time #”, see Section 4.1. Based on this error the triangulation 7" with N points
is created on S for the new time /"', see Fig. 1 and Section 4.2. Piecewise linear basis functions (¢;);—;
with respect to 7" are considered and the approach
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Fig. 1. Triangulation 7" on S at time #"".
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N N
CHx) =Y G %), X =8 e(x)

=1 =
is chosen for the model variables. The semi-Lagrangian method leads to the evaluation of the upwind points
X* and of {"(X") in Eq. (5). Because {" is piecewise linear on S, this function evaluation can be taken as a linear
interpolation of {". Thus, Eq. (5) yields a linear system of equations for the unknown coefficients (C”“)

i i=1,...N

ristic perception, that stability as well as accuracy properties are much better with a piecewise quadratic choice
for the geopotential &'

4. Adaptive grid generation

Knowing the model variables at the time 7* on the triangulation 7" of S an adapted triangulation 7" is
created. Therefore, a physical error indicator is employed to mark individual elements of 7" for refinement
and coarsening, respectively. The grid generator amatos uses these marks to modify " and to create the
adapted triangulation 7" for time step """,

4.1. Physical error indicator

Let the triangulation 7" be the set of all elements of the grid on S at time ¢*. An error estimator 5 of the
numerical solution {, , @ of the system (2,3) is a function, which assigns a scalar value #(7) to every grid ele-
ment 7 € 7". n(T) represents the quality of {, 6, @ in T. Until now there is no rigorous mathematical error
estimator for the spherical shallow water equations. That is why the physical error indicator

ol—

n(T) = (/g2+52da> , forTeT”
T

1

is introduced resulting in the corresponding global error indicator 1, = (ZTG _Wr/(T)z)z. This choice of #(T) is
based on the perception, that high flow gradients will lead to high discretization errors. # is uniformly distrib-
uted, if there is a constant value 5, that the relation 5(7T) = 5o holds for all 7 € . Thereby, 5, can be ex-
pressed by 1, = %, with the number of grid elements N,. The triangulation "™ for the future time step
"1 is constructed with the aim, that 7 is nearly uniformly distributed. If # is already uniformly distributed,
the triangulation remains unmodified, that is 7""' = 7. If 5 is not uniformly distributed, a tolerance interval
0 <y <n, <1 is fixed. Due to experimental results, the values = 21, and 77 = ¢1, are chosen for the model.
Then, the sets

n i
F = {TG?"|17(T)>—}, € .= {T€,7”|r](T)<—}
VN, VN,
are defined which contain the elements that differ too strongly from the mean value. In 7" the members of the
subsets % and % are now marked for refinement and coarsening, respectively.

4.2. Grid generation

Triangular adaptive grid generation involves an unstructured problem. Therefore, advanced techniques for
refinement, data structures and data handling are required. These techniques are implemented in the mesh
generation library adaptive mesh generator for atmospheric and oceanic simulation (amatos) [6]. The main
paradigm underlying amatos’ data organization is the strict separation of (mainly integer) grid generation
related operations and (mainly floating point) numerical operations. A gather/scatter step has to take place
prior to data processing. The main advantage of this small overhead is that numerical operations can be per-
formed on consecutive data structures, facilitating low level and automatic compiler optimization.

The grid generation part comprises an object oriented data management structure. The mesh consists of
mesh atoms: nodes, edges and cells. Edges have knowledge of their neighbors, providing the main connectivity
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Fig. 2. The initial mesh based on a bucky ball triangulation.

information. Mesh refinement is achieved by a bisection-of-marked-edge strategy [40,4]. This refinement strat-
egy leads to conforming meshes (i.e. meshes without hanging nodes) and yields a favourable lower bound for
the smallest interior angles of cells. Furthermore, this strategy is very simple from the algorithmic point of
view, since it does not need to track exceptional refinements, and is well suited for the generation of space-fill-
ing curve orderings (see below). Finally, coarsening a locally refined mesh is easily achieved. A binary tree data
structure maintains locally refined meshes efficiently. Especially, element search operations are accelerated to
O(logm) operational complexity, where m is the number of mesh cells.

When using amatos, a coarse initial mesh has to be specified. Two parameters control the mesh refine-
ment: a fine level defines a mesh level of uniform refinement, while a coarse level defines the minimum level
of refinement (i.e. the lowest permitted resolution). The local degree of grid refinement is controlled by an iter-
ative refinement or coarsening according to the sets % and %. amatos is capable of handling plane and spher-
ical two-dimensional meshes. In spherical geometries, newly inserted mesh nodes are projected to the sphere’s
surface by central projection. An initial mesh based on a bucky ball triangulation [26] is shown in Fig. 2.

An important problem with unstructured meshes on high performance computing devices is the mesh par-
titioning. amatos uses a space-filling curve (SFC) approach to find a mesh partitioning. The SFC resembles
the refinement process and needs only one bit shift per refined element [7]. This type of SFC preserves neigh-
borhood relations and yields connected domains. Perfect load balancing is achieved with a small increase in
the edge cut compared to other partitioning techniques [8].

amatos supports finite element calculations by a flexible run-time management of arbitrary element types.
Unknowns in elements are allowed to be located on nodes, edges and cell interiors of the mesh (see Section
3.3). The unknowns or degrees of freedom are sorted by the SFC in consecutive order. This leads to matrix
bandwidth reduction and significant improvement of convergence in preconditioned CG-like methods [7].

5. Linear equations solver interface

Choosing an appropriate linear solver for a highly complex finite element model is a challenging task. Espe-
cially with growing problem complexity during the development of the model, formerly successful algorithms
may turn out to be no longer applicable. Therefore, a variety of powerful solvers is needed that can be easily
exchanged. The linear equations solver applied in PLASMA is attached via the Family of Simplified Solver
Interfaces (FoSSI, see [20]) which provides a very simple user interface to MPI-parallel iterative solvers from
PETSc, hypre, PILUT, AZTEC, see [3,15,30,48], and even to the direct solver MUMPS, see [1].

FoSSI makes accessible a variety of parallel algorithms and methods such as Krylov subspace iterators like
CG, GMRES, BiCGStab preconditioned by domain decomposition (PETSc, AZTEC, and hypre), multilevel
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incomplete factorization (PILUT) or algebraic multigrid (hypre) and parallel multifrontal direct methods
(MUMPS). These are frequently tested, state-of-the-art parallel libraries, offering superior performance and
providing efficient memory usage. It is noteworthy, that libraries such as PETSc and hypre also offer several
methods to select solvers, even from external solver libraries. However, compared to FoSSI there are still
many limitations in the flexibility, e.g. concerning different interfaces and data structures in different libraries.

FoSSI is implemented as a collection of interface routines to the different solver libraries. By this, it is pos-
sible to modify each interface independently from the others, e.g., for using new solver features or upgrading
to a new solver library release with syntax changes. All FoSSI-interfaces consist of only one routine with a task
specifying parameter, allowing the selection of several operations and configuration options in one call. Fur-
thermore, the same interface may be called several times for different phases of the problem solution such as
matrix structure setup, matrix value feed, factorization, solution and clean-up. Many linear problems may be
kept in memory simultaneously. As it is even possible to define a separate MPI-communicator on each prob-
lem, several linear problems can be treated in parallel.

Benefiting from the flexiblity of FoSSI a couple of linear solvers have been tested within PLASMA. After
comparative performance tests, restarted GMRES(15) taken from PETSc preconditioned with global alge-
braic multigrid (BoomerAMG from hypre) is currently used, see Section 6.4.

6. Model validation

PLASMA is validated by means of numerical experiments. The validation process is carried out in two
steps. At first, a convergence study considering analytical solutions of the spherical shallow water equations
is performed. Although these solutions are rather artificial, the distance to an analytical solution is the only
possibility to evaluate the error of a numerical solution. After that, simulations of Rossby—-Haurwitz waves
and of planetary Rossby waves forced by orography have been carried out.

Two kinds of experiments have been performed; uniform grid experiments and adaptive grid experiments.
In a uniform grid experiment the grid of the model remains temporally fixed. In an adaptive grid experiment
the grid is adapted at every time step according to the physical error indicator described in Section 4.

The model simulations have been shown by performing adaptive grid experiments instead of uniform grid
experiments, that up to 75% fewer grid points can be used still obtaining nearly the same accuracy. Certainly,
the dimension of the problem size, that is proportional to the number of grid points, differs to the dimension of
the computational costs. That is because adaptive grid experiments include more computations per grid point,
for instance the computation of the error indicator and the grid adaptation. Further, a reliable comparison of
computational costs, especially to methods already in use, is rather complicated, because the model code is
optimized for adaptive grid experiments, but not for uniform ones.

6.1. Analytical solutions

In this section, all numerical experiments have been carried out with an integration time of 7= 5 day. Var-
ious initial conditions have been given by different known analytical solutions. For the empirical convergence
tests the relative L>-errors #(®) of the geopotential have been considered. Therefore, 5(®) has been computed
for different grid resolutions. For the uniform grid experiments, the grid resolution Ax has ranged from
261 km up to 1041 km. For the adaptive grid experiments, the parameter Ax indicates the finest grid resolu-
tion. The corresponding coarsest resolutions are denoted in Table 1. The time step At is chosen such, that the
Courant-Friedrichs—Levy (CFL) number u4 equals uz22°S- for all experiments in this section. This yields
u% < 0.1 with a maximum velocity of 80 m/s.

Table 1
Adaptive grid experiment, parameter Ax with the range of grid resolution
Ax, finest resolution [km] 261 428 522 854 1041

Coarsest resolution [km] 1041 1701 2058 3339 3938
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Numerical solutions converge to the analytical ones for the steady state case as well as for the unsteady
case. In all experiments the experimental order of convergence is about 1.0, which seems to be appropriate
due to the applied first order method in time, see the trajectory approximation in Section 3.2. The adaptive
grid experiments need between about a half and a quarter the number of grid points compared to the uniform
grid experiment and show only slightly larger L*-errors.

6.1.1. Solid body rotations

After writing down a general solid body rotation, a steady-state and an unsteady version are used to ini-
tialize two experiments. Therefore, let us choose arbitrarily (for the experimental set-up, see values below)
a vector ¢ € R’ with |¢| = 1, a maximal velocity u, and a constant dy. Then the solid body rotation

usbr(X7 t) = MOQDt(c) X k7

_ ) Q.x)?% (Q. x)? (6)
(psbr(xg t) — (uo(pt(c) k + X) + ( X) + d()
2 2
with the orography field
Q-x)°

is an analytical solution of the spherical shallow water equations, see [33, Example 3]. Here, Q = (0,0,Q)" is
the Earth’s angular velocity vector and ¢, with

cos(Qt) sin(Q¢) 0
o, (c) =] —sin(Qr) cos(Qt) 0 |c
0 0 1

is a linear rotation map. With the choice of parameters
¢=1(0,0,1)", wu=2ma/(12day), do=29400m>/s* (8)

the functions ug,, and @y, in Eq. (6) are a steady-state solution of the spherical shallow water equations, with
orography given by Eq. (7) as well as with @z =0. This solution coincides with [49, test 2].

With the choice of parameters ¢ = (—sin%,0, cos %)T, uy = 2na/12 m/day, dy = 133,681 m?/s* the functions
U, and Py, in Eq. (6) are an unsteady solution of the spherical shallow water equations, with orography
given by Eq. (7).

The relative L*-errors of the geopotential n(®) for the steady-state and unsteady solid body rotation are
displayed in Fig. 3. Numerical solutions converge to the analytical solutions with experimental orders of con-
vergence of about 1.01 and 0.76, respectively. The uniform grid experiment uses 20482 points. The adaptive
grid experiment uses 11331 (10300) grid points in the steady-state (unsteady) case at time 7= 5 day and for
Ax = 261 km. The corresponding relative L*-errors are 2.4 x 10~%, respectively 5.0 x 10> greater than for the
uniform case. Hence, the adaptive grid experiment needs only half the number of grid points, but leads to only
a slightly greater L>-error compared to the uniform grid experiment.

x 103 x 1073
5 20 1 =
8" & 151
= 3 S5
IS S 10+
2] :
ERE NI
0 T T T T T T T T T T T T T T
0 150 300 450 600 750 900 1050 0 150 300 450 600 750 900 1050
grid resolution Ax [km] grid resolution Ax [km]

Fig. 3. Solid body rotations, relative L>-errors n(®) at time 7= 5 day; uniform grid experiments — solid line, adaptive grid experiments —
dashed line; left: steady-state solution, right: unsteady solution.
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6.1.2. Jet streams
In a similar way as in the preceding section, we introduce a general jet stream, whose steady-state and
unsteady version is used to initialize two experiments. Therefore, let us choose arbitrarily a vector ¢ € R® with
|c| = 1, maximal velocities uo,u;, latitudinal angles 0y,0; and a constant dy. The auxiliary axis a and the velocity
profiles u, sor, Up jec are defined by
uycC + aQ)

A= et aqy ) = et a@VT= e -1

Upjer(sin 0) = {

1 4
wrexp (gl + ) for o <0< 0y

0 else

)

where a denotes the Earth radius given in Section 2. The jet stream

¢,(a) xk
lp.(a) x k|’

arcsin(¢@,(a)k)
D(x,1) = Pgor(X,1) — / tan ¢(2up sorttp jor + u;jel) osin0d6 + d,
0 .

U(X, t) = “sbr(X7 t) + up.jet(qot(a) ’ k)

©)

with orography given by Eq. (7) is an analytical solution of the spherical shallow water equations, see [33,
Example 4]. With the choice of parameters

c=1(0,0,1)", wuy=0, u =2na/(12day),

on _Sm _ 2,2 (10)
=15 Ql_ﬁ, dop =98100 m*/s

the functions u and @ in Eq. (9) are a steady-state solution of the spherical shallow water equations, with orog-
raphy given by Eq. (7) as well as with @z =0. This solution is similar to the undisturbed initial fields in [21].

With the choice of parameters ¢ = (—sinZ, 0, cos g)T, ug =20 m/s, u; = 2na/(12 day), Oy = %, 0; = 3% and
do = 129,629 m?/s* the functions u and @ in Eq. (9) are an unsteady solution of the spherical shallow water
equations, with orography given by Eq. (7).

The relative L*-errors of the geopotential 5(®) for the steady-state and the unsteady jet stream are displayed
in Fig. 4. The significant oscillations of 5(®) are a model artefact which can be attributed to the anisotropic
structure of the triangular grid, see [33] for a detailed explanation. Numerical solutions converge to the ana-
lytical solutions with the experimental orders of convergence of about 1.9 and 0.77, respectively. The uniform
grid experiment uses 20482 points. The adaptive grid experiment uses 5500 (5923) grid points in the steady-
state (unsteady) case at time T'=5 day and for Ax=261km. The corresponding relative L*-errors are
9.4x 107, respectively 1.7 x137 10™* greater than for the uniform case. Hence, similar as in Section 6.1.1
the adaptive grid experiment needs only a quarter the number of grid points, but leads to an only slightly
greater L>-error compared to the uniform grid experiment.

0o

x 103 x 103
10 12 4
@ 8 @ 10 A
= = 8-
5 °] g 6]
js 4 (:'.3 4 4
= 5 ] =, ]

0 T T T T T T T 0 T T T T T T T
0 150 300 450 600 750 900 1050 0 150 300 450 600 750 900 1050
grid resolution Ax [km] grid resolution Ax [km]

Fig. 4. Jet streams, relative L>-errors n(®) at time 7 = 5 day; uniform grid experiments — solid line, adaptive grid experiments — dashed
line; left: steady-state solution, right: unsteady solution.
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6.2. Rossby—Haurwitz waves

Rossby-Haurwitz waves were first used for the validation of a shallow water model by Phillips [38]. These
are solutions of the linearized non-divergent barotropic vorticity equation and move from west to east without
change of their shape. Here, a Rossby—Haurwitz wave with wave number R = 4 has been studied. Beside the
contour plots, conservation properties of the model have been evaluated. A uniform grid experiment has been
performed with the grid resolution Ax = 131 km and the time step Az = 137 s, which corresponds to the CFL
number u %5 in Section 6.1.

Rossby-Haurwitz waves, see [49, Test case 6] for a complete description, are given by their zonal and
meridional wind fields

u(2,0) = awcos 0 + aw cos® ' O(R sin® @ — cos” 0) cos R,
v(4,0) = —awR cos®" Osin Osin RA,

with the constant w = 7.848 x 107 1/s and the longitudinal and latitudinal angles /1 and 6, respectively. In vec-
tor formulation, this can be reproduced by u(x,0) = u(4,0)i + v(4,0)j with the unit vectors i and j into eastward
and northward direction, respectively.

Contour plots for the geopotential @ are depicted in Fig. 5, for simulation times of 1 and 14 days, respec-
tively. The large-scale wave structure is temporally conserved, although the meridional wave amplitude is
reduced due to numerical diffusion of the model. The values of mass m, total energy E, potential enstrophy
PE, vorticity { and divergence 6 are given in Fig. 6, see e.g. [49] for the definitions of the variables. While
the relative errors of the global integrals are plotted for m, E and PE, the mean values are displayed for vor-
ticity and divergence. As a consequence of the semi-Lagrangian approach neither m nor E nor PE are con-
served in the experiment. After 14 days, these grid size dependent errors are close to 0.1%, 2% and 1.5%,
for m, E and PE, respectively. { and  are prognostic model variables and occur as right hand sides of the
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180° -135° -90° -45° 0 45 90" 135" 180°
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Fig. 5. Rossby-Haurwitz wave, contour plots for geopotential @ after 1 and 14 days.
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Fig. 6. Rossby-Haurwitz wave, rel. errors of mass, total energy and potential enstrophy and mean values of vorticity and divergence.

Poisson equations in (3). Hence, the mean values are independent on the grid size and close to machine
precision.

6.3. Zonal flow over a mountain

The orographic forcing of planetary Rossby waves has been studied by means of 15 day long experiments,
initialized with two different flow fields, a solid body rotation and a jet stream. These zonal fields are disturbed
by an isolated mountain generating meridional disturbances and therewith planetary waves. The orography
of the mountain is given by @p(X)= Ppax(l —r(x)) with the auxiliary function r(x)=

min (1,% \/()(x) + g)z +(0(x) — % )2> and the mountain height @,,,, = 2000 gpm, where 1 gpm = 9.81 m?%/s.

For both initial fields a uniform grid experiment and an adaptive grid experiment have been performed. The
time step is Az =900 s, whereas the grid resolution amounts to 131 km for the uniform grid experiments and
ranges from 131 km up to 522 km for the adaptive grid experiments.

6.3.1. Solid body rotation

The first experiment is in accordance with test case 5 in [49]. The simulation has been initialized with the
steady-state solid body rotation of Section 6.1.1, but with constants uy = 20 m/s and d, = 58,468 m*/s>. The
contour plots for geopotential @ are depicted in the Figs. 7 and 8 for the adaptive grid experiment after 5
and 15 days. Orographic forcing by the isolated mountain is visible. The disturbance propagates into
south-easterly direction, thus the planetary waves develop into the southern hemisphere, too. The bottom sub-

plots in the Figs. 7 and 8 show sections of the corresponding grids. The time dependent regions of higher res-
olution follow the wave structure in the geopotential.
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Fig. 7. Solid body rotation with mountain, adaptive grid experiment; contour plot of geopotential @ and computational grid; time 7= 5 day.
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Fig. 8. Solid body rotation with mountain, adaptive grid experiment; contour plot of geopotential @ and computational grid; time 7= 15
day.
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After 15 days, the adaptive grid experiment utilizes 21528 points, whereas the uniform grid experiment uti-
lizes 81922 points. The geopotential difference fields between the adaptive grid experiment and the uniform
grid experiment are depicted in Fig. 9. While the differences after 5 days are below 4 gpm they have been
grown up to 20 gpm after 15 days in the eddies at 45°S. Because of a layer depth of more than 5000 gpm,
a quarter the number of grid points in the adaptive grid experiment is sufficient to obtain a geopotential dif-
ference smaller than 0.5% compared to the uniform grid experiment.

6.3.2. Jet stream

The second experiment has been initialized with the steady-state jet stream introduced in Section 6.1.2, see
[32]. The contour plots for the geopotential @ are depicted in the Figs. 10 and 11 for the adaptive grid exper-
iment after 5 and 15 days. Like in Section 6.3.1, the orographic forcing by the isolated mountain is visible.
Now, the disturbance propagates mainly into easterly direction due to the jet structure. Thus, the planetary
waves develop along the jet stream in the northern hemisphere only. The bottom subplots in the Figs. 10
and 11 show sections of the corresponding grids. Again, the time dependent regions of higher resolution follow
the wave structure in the geopotential. Beside the planetary wave structure, refined regions outside the original
jet regions are visible. This indicates a finer resolution due to turbulent flow structures and eddies.

After 15 days, the adaptive grid experiment utilizes 17796 points, whereas the uniform grid experiment uti-
lizes 81922 points. The geopotential difference fields between the adaptive grid experiment and the uniform
grid experiment are depicted in Fig. 12. After 5 days the maximum geopotential differences are smaller than
16 gpm, but they grow up to about 60 gpm after 15 days in the region of large eddies at 30°N. Due to a layer
depth of more than 9500 gpm, this corresponds to a relative error of 0.6%. Although the highest grid reso-
lution is near the eddies, the maximum error is located there. This could be an indication for the fact, that the
physical error indicator detects a refinement area as too small to reproduce the turbulent flow structures abso-
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Fig. 9. Solid body rotation with mountain, “adaptive grid experiment” minus “uniform grid experiment”; contour plots of geopotential
@; top: time 7'=5 day, bottom: time 7'= 15 day.
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Fig. 10. Jet stream with mountain, adaptive grid experiment; contour plot of geopotential ¢ and computational grid; time 7' =5 day.
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Fig. 11. Jet stream with mountain, adaptive grid experiment; contour plot of geopotential @ and computational grid; time 7 = 15 day.
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Fig. 12. Jet stream with mountain, “adaptive grid experiment”” minus “uniform grid experiment’’; contour plots of geopotential @; top:
time 7'= 5 day, bottom: time 7 = 15 day.

lutely correct. Nevertheless, a quarter the number of grid points in the adaptive grid experiment is sufficient to
simulate planetary waves, that differ only 0.6% to the results in the uniform grid experiment.

6.4. Performance data for linear solver

In this section we present performance data of standard parallel solvers from PETSc 2.2.1/hypre 1.8.2b and
MUMPS 4.3.2 assessed via FoSSI as introduced in Section 5. They are applied to solve the Poisson equations
in (3) within the adaptive grid experiment in Section 6.3.2, that is a jet stream overflowing an isolated moun-
tain. In this section the grid resolution ranges from 33 km up to 1041 km yielding a matrix with 572158 rows.
This ratio of maximum to minimum grid resolution clearly exceeds the ratio for the adaptive grid experiments
in Sections 6.1 and 6.3. The performance data show that the solver accomplishes even this demanding
situation.

Performance data of solving the linear system using GMRES from PETSc (restarted every 15 iterations) in
combination with three different preconditioners are presented for two to eight CPUs in Table 2. The first col-
umn describes the preconditioner. AMGglob stands for global algebraic multigrid (AMG, from hypre) pre-
conditioning, A2AMGloc stands for restricted additive Schwarz method with overlap 2 in combination
with local AMG iterations and A2ILU3 stands for restricted additive Schwarz method in combination with
a level 3 incomplete factorization from PETSc. As the matrix is symmetric, a combination of a symmetric
incomplete factorization and a CG method was also tested. The results are omitted because this combination
yielded only minor performance. The second and the third columns contain the number of CPUs and the iter-
ation counts (#Its) for the solution task, respectively. tpc and fg, give the times for the preconditioner setup
and the solver in seconds. The parallel efficiency P, of the solver, indicating the relation of observed speedup
to optimal (linear) speedup, is given in the last column (based on the sum of the time needed for the precon-
ditioner setup and the solver fpc + ts.). All computations were performed on one node of an IBM Regatta
p655 with 8 Powerd+ processors at 1.7 GHz.
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Table 2

Comparison of different parallel preconditioners from PETSc/hypre on IBM p655

PC CPUs #Its tpc (s) tso1 (8) Pegr (%)
AMGglob 2 14 5.05 6.94 -
AMGglob 4 13 2.59 343 99.5
AMGglob 8 12 1.36 1.94 91.8
A2AMGloc 2 112 4.86 50.11 -
A2AMGloc 4 172 2.48 39.94 65.0
A2AMGloc 8 234 1.33 33.05 40.0
A2ILU3 2 627 8.95 246.79 -
A2ILU3 4 628 4.55 129.76 94.5
A2ILU3 8 581 2.40 71.34 86.0

The convergence criterion is the relative reduction of the residual norm of 10~"'. The AMGglob combina-
tion has the smallest number of iterations with only 13 compared to 172 and 628 for A2AMGloc and A21LU3,
respectively. This is represented in the timings, too. AMGglob is much faster than any of the other combina-
tions. Simultaneously, the parallel efficiency shows very good results.

After choosing GMRES(15) with global AMG preconditioning (GMRES/AMGglob) as an appropriate
iterative solver for the Poisson equation, this combination is compared to the direct solver MUMPS, see Table
3. To allow a more detailed parallel analysis these tests have been carried out on two 32-processor-nodes of an
IBM p690 with 1.3 GHz Power4 processors with a high performance switch interconnect. The columns CPUs,
#1ts, tpc and g, in Table 3 have the same meaning as in Table 2. As the time for the setup of the matrix struc-
ture in MUMPS is significantly larger than in GMRES/AMGglob, the total time of the solver call ¢c, is con-
sidered beside the factorization time fpc and the solution time #g,;. This is especially important in an adaptive
model where the mesh and hence the nonzero pattern of the matrix may change in every time step. The parallel
efficiencies Py are calculated based on the time ¢,y

The reduction of the residual norm of 10~ '3 was stipulated, as this is approximately the accuracy the direct
solver achieves. It is seen from the parallel efficiencies Py that the scalability of MUMPS is rather limited
while GMRES/AMGglob has the potential for efficient application on massively parallel systems (=32
CPUs). The degradation of the performance from 32 to 64 CPUs on the IBM p690 can be explained by its
architecture as the calculation with 64 CPUs is the only one that is performed between two shared memory
nodes of the machine. Further tests on a Cray XD1 with a non hierarchical CPU interconnect even show a
parallel efficiency of 68% for GMRES/AMGglob on 48 CPUs.

These performance experiments demonstrate that the combination of restarted GMRES(15) from PETSc
and global algebraic multigrid (BoomerAMG from hypre) is the best solver for the Poisson equations in
(3). This combination outperforms other combinations of the iterative solver as well as even the direct solver
MUMPS.

Table 3

Comparison on IBM p690: GMRES(15) preconditioned with global AMG vs. direct solver MUMPS

Solver CPUs #lts tpc (8) tso1 (S) tcall P (%)
GMRES/AMGglob 2 36 6.50 22.12 29.37 -
GMRES/AMGglob 8 24 1.66 3.44 5.32 138
GMRES/AMGglob 16 23 0.97 2.07 3.21 115
GMRES/AMGglob 32 18 0.74 1.67 2.59 71
GMRES/AMGglob 64 18 0.58 1.29 2.15 43
MUMPS 2 6.19 3.94 13.22 -
MUMPS 8 3.21 2.32 8.74 38
MUMPS 16 2.59 3.21 9.08 18
MUMPS 32 2.55 2.86 8.94 9

MUMPS 64 2.52 2.90 9.32 4
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7. Summary

PLASMA is a parallel adaptive model of the atmosphere. For the discretization of the underlying spherical
shallow water equations a Lagrange—Galerkin method, a combination of the finite element method and the
semi-Lagrangian method, has been employed. The unstructured triangular grid is generated with the grid gen-
erator amatos and the large linear systems are solved with the parallel solver interface FoSSI.

Both, uniform grid experiments as well as adaptive grid experiments can be performed with PLASMA. In
the adaptive case the computational grid is adapted at every time step according to a physical error indicator.
The comparison of uniform and adaptive grid experiments documents, that the adaptive model leads to a sig-
nificant reduction of the number of grid points while the numerical error increases only slightly. This has been
shown within convergence studies for steady-state and unsteady analytical solutions as well as for zonal flow
over an isolated mountain. In other words, if one would allow the same number of grid points for a uniform
respectively an adaptive grid experiment, the adaptive one would yield more accurate results for local features
of interest, compared to the uniform grid experiment.

By means of a sample of quasi standard experiments the successful numerical approximation of the spher-
ical shallow water equations has been shown. Convergence studies show the first order approximation for
steady-state and unsteady analytical solutions. Furthermore, PLASMA shows satisfactory results for the sim-
ulation of Rossby—Haurwitz waves and zonal flows over an isolated mountain.

For the realization of adaptive simulations from seasonal up to annual time scales within a simplified
dynamical model of the atmosphere, PLASMA still needs improvement. Longer model integrations require
a discrete conservation of the physical variables mass, energy and potential enstrophy. Although, the pre-
sented simulations already show very satisfactory results for adaptive simulations, the physical error indicator
should be further improved, especially inside turbulent flow structures. Finally, the application of the adaptive
grid in PLASMA can be assigned to a baroclinic multi-layer model, assuming the same horizontal grid struc-
ture throughout all vertical layers.
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